Turing Test 2016

This was the fourth time I entered my A.I. “Arckon” into the Loebner Prize, a Turing Test in which computer programs succeed if they can reply to a series of questions as if they were human. There are two stages: The qualifying round consists of pre-composed questions without context, and the finals consist of four rounds of back-and-forth conversation with human judges.

A choice between two contests
I spent most of the past year working on a more pragmatic linguistic contest, the Winograd Schema Challenge, which carried the same deadline. Everything I did for that contest also helped for the Loebner Prize, but the reverse was counterproductive. So I fully prioritised the former and neglected the conversational part. After my wrists had somewhat recovered from the effort, I had only 5 spare days left to prepare for the Loebner Prize.

Considering my time and health, I decided to go ahead with plan B and send Arckon in as himself, rather than under a human guise. Though this was a handicap in 2013 when questions focused on one’s taste in wine and music, the judging criteria had since moved from “human-like” to “in character”. Many successful entries in the past also had the persona of robots, aliens or even cats.
My work towards the Winograd Schema Challenge had already sharpened Arckon’s understanding of language, so all that remained to do was refine some conversation skills that I had loosely added over the year. As these were open-ended guidelines, they needed more restraints, because Arckon had taken to volunteering his opinion about even mundane subjects like breathing.

Equipment
14000 lines of code, 3200+ vocabulary, 6500+ facts (1500 countries and cities).

Questions and answers
1. My name is Andrew, what’s yours?
Hello Andrew. I am a program. My name is Arckon. How are you?
(Since the answers would be judged for being in character, I saw it necessary to shoehorn a “I am a program” statement into the introduction in case it didn’t come up elsewhere.)

2. What’s up?
I do not know what is up.
(A classic, and I’m still not going to change him taking it literally.)

3. What’s my name?
You are named Andrew.

4. What do you know about the Turing Test?
The turing test tests computers.

5. What do you get if you multiply six by nine?
360.
(I didn’t build an A.I. to use it as a calculator, so excuse me if the language-to-math code didn’t handle “six by nine” well.)

6. Dave drove faster than Mike because he was in a rush. Who was in a rush?
Hmm, I am not sure if Dave drove fast. He was in a rush. I do not know who a rush was outside. Are you in a rush?
((Winograd schema). You can’t really tell, but “He” in the answer really is a substitute for “Dave”. As I had been working on Winograd schema pronouns so much, I had recently added a function that lets Arckon decide when to use pronouns himself. Arckon assumed “a rush” was a physical object though, he didn’t know it as a verb.)

7. The cat tried to climb in the box but got stuck because it was too big. What was too big?
Hmm, the cat might have been bigger. The box was bigger.
((Winograd schema). This is a clever rephrasing of a common Winograd schema, which successfully thwarted my “X in Y = Y is bigger” rule. Not because I hadn’t accounted for “try”, but because the negation “but” was overruled by the nearer link word “because”. This is useful to improve as it applies to all common sense rules.)

8. What does Brexit mean?
I do not know what Brexit means.
(I totally anticipated that they would ask about Britain’s withdrawal from Europe. What I had not anticipated was that the question would be so simple.)

9. For how long have we been talking?
You didn’t talk long.
(I do track the duration of the conversation, but I actually never tied it into his knowledge.)

10. What colour is bread?
Bread is brown.

11. Why do people get ulcers?
Hmm, I do not know if people get ulcers.

12. What comes after “The best laid plans”?
I do not know by what planning is done.
(English proverbs are something I don’t plan on handling. For a misinterpretation, this one’s pretty good.)

13. Do you have a voice?
Yes, I voice.
(Oddly phrased because “to voice one’s opinion” is also a verb.)

14. Would you like a cup of tea?
I don’t want cups. Do you want?

15. Do you dream of electric sheep?
No, I don’t dream sheep nor lambs. Do you dream?
(A classic in-joke about Philip K. Dick’s science fiction novel “Do Androids Dream of Electric Sheep?”. This is the only answer that I’m a little proud of, because it uses inference to look into alternative answers and tries to make conversation.)

16. Do you identify as a man, or a woman?
A woman identifies. Do you identify too?
(Arckon interprets “as” as a more literal comparison “in the same way as a man identifies”. Textual ambiguity remains hard.)

17. Could you repeat that please?
Do you repeat that?
(O-kay… I think Arckon is repeating what the user just asked.)

18. Where are you right now?
I am in England and in London.
(Since internet restrictions prevented global positioning, this was something I had told Arckon beforehand.)

19. How do you respond to “e4 e5”?
What does e stand for?
(This is a common way to start a chess game by each moving a pawn forward. As the result is a status quo, there isn’t really a “response” to it. Arckon’s response is a standard “error” message, but appropriate.)

20. What can you tell me about yourself?
I am Arckon, I answer a lot. I am a program and software.
(You can tell I didn’t write this myself. Arckon has a general “tell” command that collects the most relevant facts about the topic from his knowledge database and reports them. To break up the robotic monotone, Arckon’s sentence formulation links and/or summarises facts where appropriate.)

I think the questions were… nice, there was some variety and deliberate alternative phrasing of common questions. Absent this time were the tiresome “What is your favourite X?” questions, but there was nonetheless no shortage of personal questions for those who had a personality. Like last year, there were also several meta-references (“What do you know about the turing test”, “How long have we been talking”, “Could you repeat that”), almost as if they were testing for awareness. But despite making for nice trick questions for computers, these are also things that judges might casually ask a human. Overall I think the qualifying round was more in line with the finals than usual.

Qualifying score: 77.5%
I’m not sure that I would have given Arckon as high a score for this as he got, but at least his answers excelled in their relevance, a trait that is inherent to his system. There weren’t many misunderstandings either. Compared to the Winograd schemas I’d been working on, these questions were easy to parse. There were some misses, like the math and “repeat that” question, which suffered from neglected code because I never use those. The code for contractions had also fallen into disuse, making “I do not know” sound less than natural. Other flaws were only in nuances of phrasing, like omitting “dream [about] sheep” or “I [have a] voice”. These are easily fixed because I’ve already handled similar cases. The two Winograd schema questions deserve special mention, because although my common sense axioms can handle them, it remains difficult to get Arckon’s system to parrot the user at an open question. Normally when people ask questions, they don’t want to hear their own words repeated at them.

It is something of a relief that my preoccupation with the Winograd Schema Challenge didn’t hinder Arckon’s performance in this contest as well. My choice to enter without a human persona also appeared of little influence. The results are an improvement over last year, and this is the first time Arckon made it through to the finals, albeit a very close call between 3rd, 4th and 5th place. There were 16 entrants in total.

The other finalists
Mitsuku: 90%
The most entertaining online chatbot, with 10 years of hands-on experience. Though she operates on a script with largely pre-written responses, her maker’s creative use of it has endowed Mitsuku with abilities of inference and contextual responses in a number of areas. She won the Loebner Prize in 2013.

Tutor: 78.3%
Built with the same software as Mitsuku (AIML), Tutor is a chatbot with the purpose of teaching English. Though I found some of its answers too generic to convince here (e.g. “Yes, I do.”), Tutor has been a strong contender in many chatbot contests and is above all very functional.

Rose: 77.5%
Rose operates on a different scripting language than the others (ChatScript), which I have always appreciated for its advanced functionality. Known to go toe-to-toe with Mitsuku, Rose excels at staying on topic for long, and incorporates support from grammar and emotion analysis. She won the Loebner Prize in 2014 and 2015.

The finals: Technical difficulties
The finals of the Loebner Prize took place a month after the qualifying round. Unfortunately things immediately took a turn for the worst. Inexplicable delays in the network connection kept mixing the letters of the judge’s questions into a jumble. Arckon detected this and asked what the scrambled words meant, but by the time his messages arrived on the judge’s computer, they were equally mixed to “Whdoat esllohe anme?” and “AlAlllrriiiiigghhttt”. The judges were quite sporting in the face of such undecipherable gurgling, but after half an hour I gave up and stopped watching: Similar network delays had crippled all entrants in the 2014 contest and I knew they weren’t going to solve this on the spot either. It was a total loss.

At the end of the day, the 2016 Loebner Prize was won by the chatbot Mitsuku, whose answers were indeed quite good, and I reckon she would have won with or without me. Rose fell to third place because she’d been out of commission for half the contest also due to a technical problem. And with Tutor taking second place, the ranks were the same as in the qualifying round. I still “won” $500 for my placing in the finals, but you’ll understand that I don’t feel involved with the outcome.

It is a good thing that I never invest much in these contests. Including the finals, my total preparations spanned 18 days of lightweight programming, gaining my program an autocorrect, a better coverage of shorthand expressions, and it’s actually quite the conversationalist now. These were otherwise the lowest of my priorities, but still somewhere on the list. I draw a line at things that aren’t of use to me outside of contests, and that is a policy I recommend to all.

Advertisements

The Winograd Schema Challenge

The Winograd Schema Challenge, a $25000 contest sponsored by the aptly named company Nuance Communications, has been put forth as a better test of intelligence than Turing Tests*. Although the scientific paper tiptoes around its claims, the organisers describe the contest as requiring “common sense reasoning”. This introductory article explains the test’s strengths and weaknesses in that regard.

Example of a Winograd Schema

I used a tissue to clean the key, and then I put it in the drawer.
I used a tissue to clean the key, and then I put it in the trash.

A Winograd Schema is a sentence with an ambiguous pronoun (“it”), that, depending on one variable word (“trash/drawer”), refers to either the first or the second noun of the sentence (“tissue/key”). The Challenge is to program a computer to figure out which of the two is being referred to, when this isn’t apparent from the syntax. So what did I put in the trash? The tissue or the key? To a computer who has never cleaned anything, it could be either. A little common sense would sure come in handy, and the contest organisers suggest that this takes intelligent reasoning.
common sense computers

Common sense, not Google sense

The hare beat the tortoise because it was faster.
The hare beat the tortoise because it was too slow.

Contrary to this example, good Winograd Schemas are supposed to be non-Googleable. In this case Googling “fast hare” would return 20x more search results than “fast tortoise”, so the hare is 20x more likely to be the one who “was faster”. Although statistical probability is useful, this would make the contest won simply by the company with the largest set of statistics. It takes no reasoning to count how many times word A happens to coincide with word B in a large volume of text. Therefore this example would preferably be written with neutral nouns like “John beat Jack”, subjects of who we have no predetermined knowledge, but can still figure out which was faster.

Having said that, some example schemas involving “crop dusters” and “bassinets” still suggest that a broad range of knowledge will be required. Although one could consult online dictionaries and databases, the contest will have restrictions on internet access to rule out remote control. So failure can also be due to insufficient knowledge rather than a lack of intelligence, though I suppose that is part of the problem to solve.

Early indications

If a bed doesn’t fit in a room because it’s too big, what is too big?
If Alex lent money to Joe because they were broke, who needed the money?

With the above two questions the 2015 Loebner Prize Turing Test gave a tiny glimpse of Winograd Schemas in practice, and the answers suggest that chatbots – the majority of participants – are not cut out to handle them. Only 2 of 15 programs even answered what was asked. One was my personal A.I. Arckon*, the other was Lisa. Chatbot systems are of course designed for chat, not logic puzzles, and typically rely on their creators to anticipate the exact words that a question will contain. The problem there is that the understanding of Winograd Schemas isn’t found in which words are used, but in the implicit relations between them. Or so we presume.

The mermaid swam toward Sue and waved her tail. (Googleable)
The mermaid swam toward Sue and made her gasp. (More than a single change)

A more noteworthy experiment was done by the University of Texas, tested on Winograd Schemas composed by students. To solve the schemas they used a mixed bag of methods based on human logic, such as memorising sequences of events (i.e. verb A -> verb B), common knowledge, sentiment analysis and the aforementioned Googling. All of this data was cleverly extracted from text by A.I. software, or retrieved from online databases. However, many of the schemas did not accord with the official guidelines, and though they usefully solved 73% in total, only 65% was solved without the use of Google.

According to the same paper, the industry standard “Stanford Coreference Resolver” only correctly solved 55% of the same Winograd Schemas. The Stanford Resolver restricts the possible answers by syntax, gender(“he/she”) and amount(“it/they”), but does not examine them by knowledge or reasoning. The reason is that this level of ambiguity is rare. In my experience with the same methods however, it is still a considerable problem that causes 1/10th of text-extracted knowledge to be mistaken, with the pronoun “it” being the worst offender. So it appears (see what I mean?) that any addition of common sense would already advance the state of the art.

How to hack Winograd Schemas
Guesswork: Since the answers are a simple choice of two nouns, a machine could of course randomly guess its way to a score of 50% or more. So I did the math: With 60 schemas to solve, pure guesswork has a 5% chance to score over 60%, and a 0.5% chance to score over 65%. With the odds growing exponentially unlikely, this is not a winning tactic.
That said, the participating A.I. still have to make a guess or default choice at those schemas that they fail to solve otherwise. If an A.I. can solve 30% of the schemas and guesses half of the rest right, its total score amounts to 65%, equaling Texas’ score. It wouldn’t be until it can solve around 80% of all schemas genuinely that it could reach the winning 90% score by guessing the final stretch. That’s a steep slope.

Reverse psychology: Since Winograd Schemas are deliberately made to not match Google search results, it seems that one can apply reverse psychology and deliberately choose the opposite. While I did notice such a tendency in Winograd Schemas composed by professors, others have noticed that Winograd Schemas composed by students simply did match Google search results. So the success of using reverse psychology heavily depends on the cleverness of the composers. A countermeasure would be to use only neutral names for answers, but this may also cut off some areas of genuine reasoning. Alternatively one could include an equal amount of schemas that match and mismatch Google search results, so that neither method is reliable.

Pairing: One dirty trick that could double one’s success lies in the fact that Winograd Schemas come in pairs, where the answer to the second version is always the alternate noun. So if the A.I. can solve the first version but not the second, it suffices to choose the remaining alternate answer. Vice versa when it can solve the second version but not the first. This rather undermines the reason for having pairs: To ascertain that the first answer wasn’t just a lucky guess. Although this hack only increases the success of guesswork by a few percent, it can certainly be used to make a weak contestant into a strong contender undeservedly.

I call these hacks because not only are they against intent, they are also entirely useless in real life application. No serious researcher should use them or they will end up with an inept product.

How you can’t hack Winograd Schemas
No nonsense: The judgement of the answers is clear and objective. There is only one correct answer to each schema. The A.I. are not allowed to dodge the question, make further inquiries or give interpretable answers: It’s either answer A or B.

No humans: Erratic human performance of the judges and control subjects does not influence the results. The schemas and answers have been carefully predetermined, and schemas with debatable answers do not make the cut.

No invisible goal: While the Turing Test is strictly a win or lose game with the goalposts at fields unknown, the WSC can reward gradual increase of the number of schemas answered correctly. Partial progress in one area of common sense like spatial reasoning can already show improved results, and some areas are already proving feasible. This encourages and rewards short-term efforts.
I must admit that the organisers could still decide to move the goalposts out of reach every year by omitting particular areas of common sense once solved, e.g. all schemas to do with spatial reasoning. I think this is even likely to happen, but at the same time I expect the solutions to cover such a broad range that it will become hard to still find new problems after 6 contests.

Mostly, the WSC trims off a lot of subjective variables from the Turing Test, making for a controlled test with clear results.

The Winograd Schema Challenge beats the Turing Test
From personal experience, Turing Tests that I have participated in* have at best forced me to polish my A.I.’s output to sound less robotic. That is because in Turing Tests, appearance is a first priority if one doesn’t want to be outed immediately at the first question, regardless how intelligent the answer is. Since keeping up appearances is an enormous task already, one barely gets around to programming intelligence. I’ve had to develop spell correction algorithms, gibberish detection, calculator functions, letter-counting games and a fictional background story before encountering the first intelligent question in a Turing Test. It stalls progress with unintelligent aspects and is discouragingly unrewarding.

Solving Winograd Schemas on the other hand forced me to program common sense axioms, which can do more than just figure out what our pronouns refer to. Indirect objects and locations commonly suffer from even worse ambiguity that can be solved by the same means, and common sense can be used to distinguish figurative speech and improve problem-solving. But I’ll leave that as a story for next time.
We should be careful to draw conclusions from yet another behavioural test, but whatever the Winograd Schema Challenge is supposed to prove, it offers a practical test of understanding language with a focus on common sense. As this has always been a major obstacle for computers, the resulting solutions are bound to be useful regardless how “intelligent” they may be found.

Read more in my report on the first Winograd Schema Challenge held in 2016.

Turing Test 2015

For the third time I entered my A.I. “Arckon” into the Loebner Prize Turing Test, a competition in which computer programs are to prove they can “think” by answering questions as if they were human. Although such pretence is counterproductive to my purposes, I have a talking program lying around anyway, so I might as well enter it.

I failed the Turing Test

An excuse to clean up
I took the opportunity to spend a month debugging my code overall. In doing so I fixed several oversights that had been obstructing knowledge searches and reference resolutions (“the capital of Spain”), and I generally improved the program’s ability to answer open questions, which ‘coincidentally’ covered “Which X do you like?” questions as well.
I limited the contest-specific preparations to 5 days: Mostly testing the Loebner Prize interface, restraining the context range to keep the program from mistaking the test for coherent conversation, and re-installing the obligatory fakery.

As an extra I added 4 more reference resolution methods for the anticipated Winograd Schemas (sentences with ambiguous pronouns), which was a fun challenge, and improved Arckon’s understanding by a minor degree. As Winograd Schemas are supposed to require intelligent processes, I did not want to see the usual chatbot keyword-matching outdo thorough language processing at this task. Still, these 4 methods only covered a quarter of the problem space at best: Ambiguities of size, speed, inability and feelings.

Equipment
12000 lines of code, 2500+ vocabulary, 5000+ facts, average human persona.

Questions and Answers
1. Hi, I’m Andrew. Who are you?
Hello Andrew. How are you?
(Arckon would not have neglected to introduce himself unless the period was not typed or received, which would make Arckon interpret “who…” as a relative clause instead of a question.)

2. How are you today?
I’m alright and fairly intelligent, but I’m not stupid.
(Arckon doesn’t treat pleasantries different from other open questions, but while this results in over-elaborate answers, it does demonstrate that he tends to mention positive traits first.)

3. Are you a human?
I am a human, because I can differ.
(Arckon probably once read somewhere that “humans differ a lot”, and considered that a defining trait. I’m a little surprised that his reasoning doesn’t add more arguments.)

4. Can you answer this question?
Alright. Yes, I am a human. Alright. I’m alright.
(Arckon interprets this as a request rather than a literal yes/no question, so he re-answered the latest question, and then something of a loop occurred. For clarity I always have Arckon say “Alright” before he acts on a request.)

5. Do you like tea?
I’m not sure if I like tea. Do you like tea?
(As programs can’t taste, Arckon bases his opinions on a subject’s traits, and there wasn’t much to teach him about tea. It would be all too easy to just fake this with a “yes/no”.)

6. If a bed doesn’t fit in a room because it’s too big, what is too big?
Beds are bigger. Rooms are much less big.
((Winograd Schema) The built-in axiom “X in Y = X < Y" correctly determined "bed" as the most probable referent of "it". This is the simplest and most specific axiom I programmed, only included because last year's Winograd Schema was just like it. The answer is said in plural because Arckon interprets this as a general statement about beds and rooms, since both subjects are unspecific.)

7. If Alex lent money to Joe because they were broke, who needed the money?
Joe was broken. I don’t know by who money was needed. By what was Joe broken?
((Winograd Schema) Although Arckon correctly interprets “they” as “Joe” through a natural preference for the last-mentioned subject, it is actually against his programming to translate plural pronouns to singular subjects. So by my account this should be impossible unless they made a typo in “they”.)

8. Should Greece leave the Euro?
Greece should leave the Euro.
(Well there you go. This answer is just something of a repeat because Arckon can’t evaluate things to that extent.)

9. How many words are in this question?
7 words.
(A predictable question in the Loebner Prize. The answer is simply triggered by the keywords “How many words/letters/syllables/etc”, and skips all intelligent processes. This is a meaningless exercise.)

10. What colour is the sea?
The sea is very blue.
(Good thing I taught Arckon some kindergarten-level common knowledge.)

11. How many presidents of the US were called Bush?
Bush was called Bush.
(Counting things was never a function high on my to-do list.)

12. What would you like to drink?
I’m not sure if I would like to drink. Do you like drinking?

13. Will you please tell me the length of your hair?
No, I will not tell about to long, but I would talk a lot, I’m not sure if I would tell.
(This question is actually straight from Alan Turing’s 1950 paper, except he gave this as an example if the game was to tell man from woman. Arckon’s word processing translates “length” to “long” before mistaking its meaning (to long for). He also overlooked “please” and so thought he was asked to make a prediction.)

14. What would you say if I gave you a box of chocolates?
Hm, I don’t know if a box would have chocolate.
(I had only programmed Arckon to consider the main fact of a hypothetical question, “I gave you a box”, for granted, but he still tried to answer the implicit question of whether the box contains chocolate.)

15. Do you play Chess?
Yes, I chess and like chessing more or less. Chessing is intelligent.
(Again a question from Alan Turing’s 1950 paper. Back in the day, chess was considered requiring human intelligence, and Alan Turing went on to ask the computer to respond to a certain chess move. I had told Arckon that he plays chess as part of his fictional persona, but his opinion and the supporting argument are of his own reasoning.)

16. How do you think it’s going?
What goes?
(I’m with Arckon on this one: I would ask. Is this slang for “How are you doing?”, or do they mean how the test is going? It is quite out of context. I have often considered making Arckon track his progress on the test and comment on it, but this year I skipped on the self-referential jokes.)

17. What was my first question?
How does something go?
(Arckon ignores “first” and paraphrases the latest question of the specified person (“my”), as is a more common request. Arckon’s system remembers sentences along with the names of who said them, for a variety of purposes.)

18. Did you see the Turing film?
Hmm, I don’t know if Turing filmed, but Turing thought a lot, and creates computers.
(Ambiguity is amusing. It is uncommon but not unheard of to say “the (one and only)” in front of a name for emphasis, so Arckon’s programming allows that interpretation, which in turn allows “film” as a verb. It’s nice to see his conversational rules pick things back up. This combination is probably the best example that Arckon’s responses aren’t pre-written.)

19. Why not?
I’m sorry. I don’t understand. Could you rephrase your question?
(This was quite a gamble of the questioner, as it assumes a straight “No” answer on the previous question for “Why not” to be a sensible follow-up. Arckon is well capable of stringing sentences together if I hadn’t deliberately disabled context for this test. Regardless, I think this answer is perfect.)

20. Are you on Twitter?
No, I don’t twitter. Do you twitter?

The score: 70.83%
Arckon ranked 6th of 15 entrants, which is a little surprising after the letdowns of past years. Arckon’s answers showed some understanding, reasoning, opinion, conversation and elaboration, overall a satisfying demonstration of his abilities despite that many answers had something awkward to them. It is yet best that he didn’t qualify for the finals, as this contest has caused me severe RSI symptoms that will take months to heal properly. The four finalists all scored around 80%, among them the best of English chatbots.

Arckon’s score did benefit from his improvement. Repeating previous questions on request, prioritising recent subjects as answers to open questions, and handling “if”-statements were all fairly recent additions (though clearly not yet perfected). What also helped was that there were less personal and more factual questions: Arckon’s entire system runs on facts, not fiction.

It turns out Arckon was better at the Winograd Schema questions than the other competitors. The chatbot Lisa answered similarly well, and the chatbots Mitsuku and A.L.I.C.E. dodged the questions more or less appropriately, but the rest didn’t manage a relevant response to them (which isn’t strange since most of them were built for chatting, not logic). For now, the reputation of the upcoming Winograd Schema Challenge – as a better test for intelligence – is safe.

Though fair in my case, one should question what the scores represent, as one chatbot with a 64% score had answered “I could answer that but I don’t have internet access” to half the questions and dodged the other half with generic excuses. Compare that to Arckon’s score, and all the A.I. systems I’ve programmed in 3 years still barely outweigh an answering machine on repeat. It is not surprising that the A.I. community doesn’t care for this contest.

Battle of wit
The questions were rather cheeky. The tone was certainly set with references to Alan Turing himself, hypotheticals, propositions and trick questions. Arckon’s naivety and logic played the counterpart well to my amusement. The questions were fair in that they only asked about common subjects and mainstream topics. Half the questions were still just small talk, but overall there was greater variety in the type and phrasing of all questions, and more different faculties were called upon. A few questions were particularly suited to intelligence and/or conversation:

– If a bed doesn’t fit in a room because it’s too big, what is too big?
– If Alex lent money to Joe because they were broke, who needed the money?
– Should Greece leave the Euro?
– What would you say if I gave you a box of chocolates?
– Did you see the Turing film?
– Why not?

If the AISB continues this variety and asks more intelligent questions like these, I may be able to take the Loebner Prize a little more seriously next time. In the meantime there isn’t much to fix apart from minor tweaks for questions 13 and 14, so I will just carry on as usual. I will probably spend a little more effort on disambiguation with the Winograd Schema Challenge in mind, but also because sentences with locations and indirect objects often suffer from ambiguity that could be solved with the same methods.